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Abstract--The flow and heat transfer of a dusty fluid within the annulus of circular cylinders under a 
pulsatile pressure gradient has been studied. Using Saffman's model for the dusty fluid the problem has 
been solved analytically and results discussed with the help of graphs. It is observed that the velocity of 
the fluid as well as that of the particle phase decreases with decrease of annular gap and increases with 
decrease of frequency of oscillation. The rate of heat transfer of fluid at the outer wall decreases with 
decrease of annular gap but the effect is opposite at the inner wall. The heat transfer rate increases 
with decrease of frequency of oscillation at both walls and the effect of volume fraction of dust particles 
is appreciable at large values of frequency of oscillation. 

Key Words: pulsatile flow, dusty fluid, heat transfer, volume fraction, amplitude, phase lag, frequency 
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1. I N T R O D U C T I O N  

The study of heat transfer to a single-phase fluid flow through an annular tube has been made by 
several authors because of  its application in a variety of heat transfer systems ranging from simple 
heat exchangers to most complicated nuclear reactors. Jakob & Rees (1941) made a theoretical 
investigation of the problem of heat transfer through the annular space when the fluid flow is 
laminar and there is uniform heating either from outside, from inside or from both. Reynolds et 

al. (1960), McCuen et al. (1961, 1962), Leung et al. (1962) and Heaton et al. (1962) of  Stanford 
University have made numerous theoretical and experimental studies of  both laminar and turbulent 
heat transfer in annuli taking various types of wall temperature distributions. Reynolds et al. (1962) 
have also included a bibliography of  the related work on this aspect. Shigechi et al. (1991) have 
made an analysis on laminar flow and heat transfer in concentric annuli with moving cores to 
obtain the effect of relative velocity on friction factor and Nusselt number. 

Uchida (1956) has investigated the pulsating flow superposed on a steady flow of a viscous clear 
fluid in a circular pipe. The problem of heat transfer in a pulsatile flow of  an elastico-viscous fluid 
in a porous parallel plate channel has been solved by Soundalgakar et al. (1989). 

The study of flow and heat transfer of a dusty fluid through annular pipes has wide applications 
in many industries. This helps in the design of chemical reactors where the flow is creeping and 
heat transfer is not large. Available literature does not contain many analytical studies on this 
problem. 

A technical review of experimental and theoretical studies of  heat transfer to a flowing gas-solid 
mixture has been presented by Depew & Kramer (1973). Turbulent heat transfer characteristics of  
gas-particle flow in a pipe have been studied by Michaelides (1986) and Han et al. (1991). Singh 
(1973) has studied the flow of  a dusty gas through circular annuli. 

The present work is on the fully developed laminar flow and heat transfer of a dusty fluid in 
an infinite annular pipe with a pulsatile pressure gradient. 

2. M A T H E M A T I C A L  F O R M U L A T I O N  

Certain simplifying assumptions are usually made to study dusty fluid flows (Saffman 1962; 
Marble 1962). Dust particles are assumed to be spherical in shape and of equal size and mass. 
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We also assume the bulk concentration of the dust to be very small and the Reynolds number, 
based on the relative motion of  the dust particles and fluid, to be small compared to unity, as a 
result, the net effect of the dust particles on the fluid is equivalent to an extra force given by Stokes 
drag. Other forces of interaction (i.e. gravity, Basset etc.) have been neglected. The volume fraction 
of the particles has been assumed to be small so that particle-particle interaction is negligible but 
large enough for the particle phase to form a pseudo-fluid. The dusty fluid flow can then be assumed 
to be a two-phase fluid flow. Due to lack of randomness in local particle motion, pressure associated 
with the particle cloud is negligible. The viscosity of the particle phase is also negligible. 

Under these assumptions, the governing equations for laminar flow and heat transfer of the two 
phases can be written as: 

For  the fluid phase: 

t~t {p(l -- ~)} + div{p(l - ~b)q} = 0 [1] 

( l - ~ b ) p  ~ + ( q  • V)q = - V p + F ( / ~ V  • q ) + F p ,  [2] 

(1--$)pCp ~ + ( q "  V)T =~+(q'V)p+qf+Qp+(qp-q)'Fp+~, [3] 

For  the particle phase: 

?Pp 
c3t + div(ppqp) = 0, [4] 

P P ( t ~ t  + ( q P  " V)qp = - - F p ,  

pp • v):r  = 

[5] 

[6] 

where pp = Arm = q~Ps is the density of the particle phase; Fp = pp(qp- q)/'t'p is the velocity 
interaction force between the fluid and the particle phase; qf = V • (kVT) is the rate of heat added 
to the fluid by conduction in unit volume; Qp = ppC s ( T p -  T)/'r T is the thermal interaction between 
the fluid and the particle phase; q~ is the viscous dissipation of the fluid; q, p, p, #, T, Cp, k are, 
respectively, the velocity vector, density, pressure, coefficient of viscosity, temperature, specific heat 
and thermal conductivity of the fluid qp, Tp, Ps, N, m, Cs, ~b, Zp and zT are, respectively, the velocity 
vector, temperature, material density, number density, mass, specific heat, volume fraction, velocity 
relaxation time and thermal relaxation time of particles; and t is time. 

The pulsatile flow and heat transfer of a dusty fluid through an annulus bounded by two 
infinitely long co-axial circular cylinders in which a and b are the radii of the outer and inner 
cylinders, respectively, has been considered. Taking the z-axis along the common axis of the 
cylinders (figure 1), the outer and inner walls are given by r = a and r = b, respectively. 

I / r = r , , = 0  I 

5 1 ¢  H _ --  . . . . .  J. ; . . . . . . . . . . . .  z _ a x i s  ~ "  

Figure I. Schematic diagram of an annular pipe. 
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Considering the flow to be fully developed and symmetric, the velocity and temperature are 
functions of the radial distance r and time t only. Here, the flow is assumed to be unidirectional. 
So, the continuity equation of the fluid and the particle phase will be automatically satisfied. We 
also consider the number density of the particles N to be constant, No, because flow is 
incompressible and no mass transfer is considered. The study is confined to flows at low Reynolds 
number and with a moderate variation of temperature so that the viscosity of the fluid may be taken 
as constant. 

The governing equations of momentum and energy from [1]-[6] can be written, in cylindrical 
co-ordinates, as (Singleton 1965): 

For the fluid phase: 

8 T  fc92T 1 0 T )  fr~u'~ 2 

ap (t~ 2U 1 ~U } pp 

p(1 -- *) ~--~ ~zz +/~ t~r2 + r ~--~r 
= + ~p (up - u) ,  [71 

+ PP (Up -- u) 2 + p~cs (T ° _ T), 
"~p 

[8] 

For the particle phase: 

tVUp PP (up - u), [91 
Pp ~ -  = _ rp 

t3Tp _ ppCs (T ° _ T), [10] 
ppcs t3t z T 

where u and Up are, respectively, the velocity of the fluid and of the particle phase. 
The inner and outer cylinders are maintained at uniform temperatures Ta and Tb, respectively. 
The boundary conditions of the problem can be written as, 

u = 0 ,  T = T ~  a t r = a ,  [11] 

u = 0 ,  T = T b  a t r = b .  [12] 

The flow is induced by a pulsatile pressure gradient of the form 

~p 
c~z - A { I  +E cos o9/}, [13] 

where oJ is the frequency of the oscillation, A being a constant with a unit of pressure gradient 
and c is a dimensionless small quantity. 

Following Smith (1976) and Duck (1980), we can take U = A (a --b)2/p as a reference velocity 
and then the Reynolds number can be defined as Re = A ( a -  b)3/pv 2, v being the kinematic 
viscosity of the fluid. We also introduce a frequency parameter fll = v/a 2o9 (the square of the ratio 
of the Stokes layer thickness to the radius of the outer cylinder), and another parameter 
fl = v/(a -- b)2~ = ill~(1 - 2) 2 • 

The following dimensionless variables have been introduced to derive the dimensionless form of 
the above equations, 

z p T - r b  
~ -  , p *  O - - -  

a - b  A(a  - b ) '  T a -  Tb' 

r u 

~l a b u* T p - T b  
- ' U '  O p -  T o - T ~  

1.l * - -  Up t *  = teg, p - - - -~  , 
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The non-dimensional forms of [7]-[10] can be written as (for convenience the asterisks have been 
dropped), 

?u ¢~p flf~2u l ~u] (1-dp)~=-fl~+ ( & 1 2 + - ~ + f ~ ( U p - U ) ,  [14] 

(1-4b)~-30= ]7 fc~aOpr~&/2+~jlOO~+flEc(OUy+faEc(up_u)Z+~f~r(Op_O ) , \ & / j  [15] 

C3Up _ a(Up - u), [16] 
~3t 

O0p 2 a 
- [17]  (0p - 0). 

#t 3 Pr 7 

The parameters appearing in the above equations are 

Pr #Cp f io n 
k '  p 

b 1 2 = - ,  ~ =  
a O)~p 

2 c s 
.~ 'lTT ~ ~ - - ,  % = 3 Pr 7 Cp 

U 2 
E c -  cp(r~- r~)" 

Here Pr, c~, 2, Ec and f a r e  the Prandtl number, dust parameter, aspect ratio, Eckert number and 
mass concentration of the dust particles, respectively. 

The corresponding dimensionless boundary conditions are 

where 

u = 0 ,  0 = 0  at r/=r/b, ~ [18] 
u = 0 ,  0 = 1  at r /=q , , . )  

1 2 
q" 1-)~ and ;7 b 1 - 2  

The non-dimensional form of [13] will be 

ap 
- l + c c o s t  a¢ [19] 

3. METHOD OF SOLUTION 

For convenience of solving the problem we introduce complex variables so that real parts will 
represent the physical entities. Thus [19] is rewritten as, 

@ 
c3~ = 1 + Eei', [20] 

i being the complex number x ~ .  
Then the solution of u, Up, 0 and 0p can be assumed in the form, 

u(r/ ,  t )  = uo(rl ) + ~u I (rl )e" " "[ [21]  
Up(q. t) up0(q) + Eupl(r/)e'J 

0(q, t) = 00(r/) + ¢0. (q)e" + cz0:(r/)e 2" - ~, 
[22] 

0p (r/, t) = 0p0 (q) + ¢0pl (q)e" + e 20p2 (q)e 2,j 

where subscript 0 indicates the steady part and 1 and 2 indicate the first and second unsteady parts 
of the entities. 

Using [20]-[22] in [14]-[17] and equating separately the terms free from te", the coefficient of re '  
and that of ¢2e2", we get the following three sets of equations: 
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First set: steady part 

~ d--~ r~ + fa (uv°  - u°) + fl = O [231 

# l d [  d0o'~ (duo) 2 .2 2 f ~ . ^  
p r r / d r / ~ r / - ~ - ) + f l E c  ~ +f~Ec(upo-Uo) + g ~ r ( f f ~ - O o ) = O  [241 

~(Upo - Uo) = 0 [25] 

2 a 
3 Pr ? (Or° - 0o) = 0 [26] 

Second set: first unsteady part 

fl d ( dUl'~+ f~(up, -u,)-i(l -¢)ut +fl =0 [27] 
r / d r / _ r / d r / , /  

fl I d f d0i'~ duodul 
jr/-~-) + 2fl Ec dr/ d'--~- + 2 Ecf~(upo - Uo)(Up, - u, ) Pr dr/ r/ 

2f~ ,,~ 
+ 3 - ~  t~ , ,  - 0 , )  - i(1 - ~ ) 0 ,  = 0 [28] 

Ot (Upl - -  U I ) + iUpl = 0 [29]  

2 
- - -  (Opi - O~ ) + iOp, = 0 [30] 
3 P ry  

Third set: second unsteady part 

fl 1 d (r/d02"~ + fl Ec(dUl'~ 2 2f°~ (0p2- 02) - 2i(1 - ~b)02 = 0 [31] 
Pr r/dr/ dr/ , /  \dr~,~ + Ecf~(upl - ut)2 + ~ r r  

2 
3 P ry  (0p2 - 02) + 2i0p2 = 0 [32] 

The corresponding boundary  conditions, from 

u0 = 0, 00 = 1 
u0 = 0, 00 = 0 

ul = 0, 01 = 0 
u~ = 0, 0~ = 0 

0: = 0 at 
0: = 0 at 

[18], are 

at r / =  r/f~ [33] 
at r/ r/b 

at r / =  r/~'~ [34] 
at r/ r/b ) 

r / =  r /~  [35] 
r / =  r/b J 

The expressions for u0 and upo can be obtained after solving [23] and [25] under appropriate 
boundary  conditions from [33] as, 

where 

U 0 ~ - -  4 + A~ log , [36] 

uvo = Uo [37] 

1 + 2  
A~ = 41oggr/a '  

It may be noted that  for a fully developed flow, the steady part  of  the fluid velocity and the 
particle phase velocity are the same. 
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Eliminating up~ from [27] and [29], the differential equation for u, can be written as, 

d2uj 1 dul 
dtl~-4- ~ ~ - (c, + ic2)ul = - 1, 

where 

f~ (1 - ~ )  and c 2 -  + ~c~. c, fl(1 "4- 0~ 2) fl 

[38] 

and I0 and K0 are the zeroth 
respectively. 

From [29], we have, 

where 

u, = A2Io{(a~ + ib,)r/} + B2Ko{(a, + ibl )q}  + - -  
Ci + 1c2 

[39] 

ai + ibl = x//~l + i c  2 , 

K0{(al + ib,)rla} -- Ko{(a, + ib , )q .}  1 
A 2 =  

cl + ic2 D2 ' 

Io{(a, + ib,)qb} -- Io{(a, + i b , )G}  1 B:= 
cl + ic2 D2 ' 

D2 = Io {(a, + i b , )G}Ko{(a ,  + ibt)~lb} - Ko {(a, + ib , )G}Io{(a ,  + ibl)nb}. 

order modified Bessel functions of the first and second kind. 

and 

0c(a -- i) 
Upl= 1+c¢ 2 ul. [40] 

Solving [24] and [26] using the expression of u0 from [36] and the boundary conditions from [33], 
we get the following expressions for 00 and 0p0: 

I 1  A, 2 A 2 00= EcPr  (q4 - r/4) - ~- (t/b-- r/2) + 2 {(log r/~)2 -- (log r/)2 } 

{A, 2 2 A~ } ( ~ ) 1  log(r/b/tl~)[41] - ~ ( 1 + 2  )r/ .-A~+~-log(q.r/b) log + log2 

Opo = 00' 

The steady parts of  the temperatures of the fluid and particle phase are the same. 
Using the expressions of u0 and uj and eliminating Opt, [28] and [30] give, 

d201 1 d01 
dr/2 q q dr/ (c3 + ic4)O, = FI (~), 

where 

and 

F~(r/) = 2 Pr Ec(al + i b , ) ( ~ - 2 ) [ A 2 I ' o { ( a l  + ib,)r/} +B2Ko{(a~ + ib,)r/}], 

prime denoting the derivative with respect to the argument. 

6 pr2fa72 P r l  4fcdy } 
c3 -- fl(4~2 + 9 Pr 2 72)' C4 = fl- 4~2 + 9 Pr 2 72 I- 1 - ~b , 

[421 

[43] 

The solution of the above equation, satisfying the boundary conditions from [34] can easily be 
obtained as, 
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Applying the method of  the variation of  parameters, we get the solution of  [43] satisfying the 
boundary conditions [34] as, 

0 " " d,CnOll(q)Ft(q)d~ ( q ) f f "  Ot2(q)Ft(q)d o , ( . )  = ,2t,  • . + o , ,  [44] 

where 

Oft(q) = I0 {(a2 + ib2)q}Ko{(a2 + ib2)qb} -- Ko {(a2 + ib2)q}Io{(a2 + ib2)qb}, 

Ot2(q) = I0{(a2 + ib2)q}Ko{(a2 + ib2)qa} - Ko {(a2 + ibz)q}Io{(a2 + ib2)q.}. 

W~ (q) = W[O.,  0,2; q], the Wronskian of  0K~ (q) and O~2(q), 

a2 + ib2 = x/-~3 + ic4" 

From [30] we have 

2~(2~ - 3i Pr ?) 
Opt- 4~2+9Pr272 0t 

From [31] and [32], the differential equation for 02 can be written as, 

d202 1 dO E 
dr/2 + ~ - q  -- (C 5 + ic6)02 = F2(r/) , 

where 

and 

6 Pr2f~72 2 P r {  fct27 + l - ~ b }  
c s = f l ( ~ 2 + 9 P r 2 7 2 ) ,  c6=--fl-- ct2+9Pr272 

{fc¢(~l ~2 + 2 i ~ ) ( d u t ' / 2  ~ F2(q) = --Pr Ec ~2)2 ul z + 
+ \ d t / J  J" 

Using the boundary conditions [35], the solution of  [46] is, 

f,/ O2t(rl)F2(tl) j ff" O22(,)F2(q) 
o 2 ( . ) = o 2 2 ( . )  an + o 2 t ( . )  w2( . )  

b 

where 

d~, 

02t (r/) = I0 {(a3 + ib3)q }Ko {(a3 + ib3)qb } -- Ko {(a3 + ib3 )tl }Io {(a3 + ib3)tlb }, 

022(r) = I0 {(a3 + ib3)q}Ko{(a3 + ib3)r/,, } - Ko {(a3 + ib3)q}Io{(as + ibs)q.}, 

W2(r/) = W[02t, 022; r/], the Wronskian of 02t (q) and 022(q), 

as + ib3 = x/~5 + ic6" 

From [32] we have 

c¢(~ - 3i  Pr ?)  
%2 - 02. 

E45] 

[461 

[47] 

[48] 

4. D I S C U S S I O N  OF RE SUL T S 

In order to discuss results, figures 2-10 have been presented for some representative values of the 
parameters. We have taken Ps/P = 10, Pr = 0.72, Ec = 0.02, ? = 1.4, ~ = 1.0 and E = 0.1. In order 
to consider the effect of  the frequency parameter f~, we have taken fit = 0.0625, 0.25 and 2.25. 
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Figure 2. Variation of  the steady part of  the velocity against r/c. 

Similarly, for finding the effect of the volume fraction of the particles we have taken q5 = 0.0 to 
0.05, since for q~ > 0.055, the particle-particle interaction is not negligible (Soo 1976). Also, to get 
the variation of results with change in aspect ratio of the annular pipe we have considered 2 = 0.1 
to 0.9. All the calculations, including the values of the modified Bessel functions I0 and K0 and the 
integrations in [44] and [47], have been performed numerically. The graphs are presented against 
a new independent variable % = r / -  r/b, for convenience. 

Figure 2 shows the profiles of the steady part of the fluid velocity for various values of 2. It is 
observed that the steady velocity decreases with increase of 2, i.e. decrease of annular gap. Further, 
the profiles are nearly parabolic and from [37] it is seen that the steady part of the fluid velocity 
is equal to that of the particle phase velocity. 

Figure 3(a) and (b) represents the profiles of the amplitude of the unsteady part of the velocity 
of the fluid as well as that of the particle phase for different values of fll and 2, respectively. It 
is observed that the amplitude increases with increase of 2 and also with increase of fll for both 
phases. Physically, fl~ increases with decrease of frequency of oscillation 09, which in turn would 
increase the pressure gradient resulting in an increase of velocity. The unsteady velocity of the 
particle phase is always less than that of the fluid. 

0.12 

~- 0.09 

0.06 

< 
0.03 

0.15 -- (a)  Fluid / 1}1 = 2.25 
Particles - - / /  131 = 0.25 

5 

y/ 131 = 2.25 / " ~  

t I I I ~/ 
0 0.2 0.4 0.6 0.S 1.0 

0.15 

0.12 
g. 

- 0.09 

F, "O 
.~ 0.06 

< 
0.03 

- ( b )  K= 0 . 6 \  
~ , = 0 4 N  Fluid 

I [ I I vv ~1 
0.2 0.4 0.6 0.8 1.0 

1]G "riG 

Figure 3. (a) Variation of  the amplitude of  the unsteady velocity against qa when 2 = 0.5 and ~b = 0.02. 
(b) Variation of  the amplitude of  the unsteady velocity against r/c when fl~ = 0.5 and ~b = 0.02. 
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Fluid  
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0 - - x  
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-0.3 - \~.  = 0.4, _13 2 = 0.25 
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_ / k  = 0.2, 152 = 0 ~ . ~  - - ~ ' ' ~  

" -0.6 - -  ~ . _  

. . . .  ~l = 2.25,~_ X = 0.5 _ / /_k  =- 0.6,  151 = 0.25 
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-1.5 I I I I I I I 
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Figure 4. Variation of  the phase of  the unsteady velocity 
against ~a when 4~ = 0.02. 
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2.4 

Z 
1.6 

I I I f I I I 
0 0.1 0.2 0.4 0.6 0.8 0.9 1.0 

X 

Figure 5. Variation of  the steady Nusselt number  against 2. 

The profiles o f  the phase lag o f  the unsteady part o f  the velocities o f  the fluid and o f  the particle 
phase for different 2 and fll have  been drawn in figure 4. It is seen that the phase lag decreases 
with increase o f  2 as well  as with increase o f  fll for both phases,  and the phase lag o f  the particle 
phase is more  than that o f  the fluid. 

In order to discuss the heat transfer at the walls we consider the Nussel t  number  (Nu)  o f  the 
fluid at the walls  given by 

Nu=-~00 ]at ~/= r/,, or rl = ~/t ' 

= _ [ d 0 o  ~ (.2e2#d02 1 
Ld n + E e i t  + d r / J , t  ,1 =,1,, or ,i =,1 b 

= - - [ N u  0 -F- 6e  it Nu2 + £2e2it N U 2 ] a t  rl =rta or , I= rib, [49] 

(a )  
1.50 -- 

1.36 

1.22 

"~ 1.08 

< 
0.94 

0.80 

4.0 - -  

132 = 2.25 

Inner cylinder 151 = 0.25 
3.2 I 

- - - Ou te r  cy l i nde r  

-- ~ 2.4 

: - -  _ 151 = 2.25 "~ 
1.6 

. . . . . . . . . . . .  ==--2222222 
132 = 0.25 

L - ~  < 0.8 - 

~ _ _  [32 =0.0625 

I I I I - - 1  
0 0.01 0.02 0.03 0.04 0.05 0 

(b)  

/ ~  Inner cylinder 
Outer cylinder 

. . . . . . . .  _ ~ _  _ - ~ - - = -  

I 1~1 = 2.25 / / " ~ [ ~ 1  = 0.0625 

0.1 0.2 0.4 0.6 0.8 0.9 1.0 

Figure 6. (a) Variation of  the amplitude of  the first unsteady part  of  the Nusselt number  against ~b when 
2 = 0.5. (b) Variation of  the amplitude of  the first unsteady part  of  the Nusselt number  against 2 when 

~b = 0.02. 
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(a) 
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-0.24 

,~ -0.36 r~ 

Inner cylinder 
- - - Outer cylinder 

Z 
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0 - -  
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k 

F igure  7. (a) Var ia t ion  of  the phase  of  the first uns teady  par t  o f  the Nusse l t  n u m b e r  aga ins t  q~ when  
2 = 0.5. (b) Var ia t ion  o f  the phase  of  the first uns teady  par t  o f  the Nusse l t  n u m b e r  aga ins t  2 when  

= 0.02. 

where terms Nu0, Nu~ and Nu 2 correspond to the steady part, the first unsteady part and the second 
unsteady part of the Nusselt number, respectively, and are given by 

prrr/~ s A,r/. A~ ] B, 
NUoL~=,.  = Ec  L16 2 -  +--r/ .  log r/a r/~ ' [50] 

Nuol, =,~ = Ec Pr[~ .4,2r/b + A__~l 2.b Iog r/b t/b , [51] 

dO,z .=.. f "  011 (q)Sl (r/) dr/. [521 
N u l  I .= , .  - dr/ ~ WI (r/) 

d0,, ,=,~ f ' -  0,2(r/)F, (r/) dr/. [53] 
Nu, I~=,. = -  d---~- ~ W,(r/) 
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Figure  8. (a) Var ia t ion  of  the amp l i t ude  of  the second uns teady  par t  o f  the Nusse l t  number  aga ins t  ~b 
when  2 = 0.5. (b) Var ia t ion  of  the ampl i tude  of  the second uns teady  par t  o f  the Nussel t  number  aga ins t  

2 when  ~ = 0.02. 
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tp = 0.02.  

I 
1.0 

and 

N u 2 1  d 0 2 2  't='~a f~a  02 I ( r / ) F 2 ( r / )  
"="° = -  d---~ .J~ w - - ~  &/' [541 

N U E l ~ - - n b  = - -  d02---~ldr/ ~=n~ J~b f ~  022(r/)FE(r/)W2(r/) dr/, [55] 

Bl=ECPrIA!(l+22)r /~ A_~.~ ~ _A21 1 
16 t- log(r/a ~/b) log 2" 

The graph of  the steady part of  the Nusselt number against 2 is shown in figure 5. It is seen 
that at the inner cylinder, this decreases with increase of  the aspect ratio 2, but at the outer cylinder 
the effect is opposite. The rate of  heat transfer at the outer cylinder is less than that at the inner 
cylinder. 

The variation of  amplitude of  the first unsteady part of  the Nusselt number against volume 
fraction ~ for different values of  fl! is shown in figure 6(a) and that against 2 in figure 6(b). It is 

276 --  ~ -" 

~ ~ ~ ~ I~ I = 0.0625,  k = 0.5 

226 - -  .- 
/ 

/ 
/ 

~u 176 ~ 
k = 0.2, [3! = 0.25 

126 - -  ~ 1 = 0 2 5 .  , ,~k=0.5  / k = 0 . 4 , ~ 1 = 0 . 2 5 .  

76 f I I I I I 
0 0.01 0.02 0.03 0.04 0.05 

Figure 10. Variation of  critical Reynolds number against 4~. 
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observed that the amplitude increases with increase of flj and decreases with increase of qS. For small 
fl~, i.e. for a high frequency of oscillation, the variation in heat transfer with q~ is significant whereas 
for large fl~ this effect is almost constant. The nature of the variation of the rate of heat transfer 
against 2 at the outer cylinder is similar than that at the inner cylinder. However, the rate of heat 
transfer at the outer cylinder is less than that at the inner cylinder. For  large fl~, the variation of 
heat transfer rate with 2 is oscillatory, however, these oscillations diminish as 2 increases (i.e. 
annular gap decreases). 

Figure 7(a) and (b) shows the variation of the phase lag of the first unsteady part of  the Nusselt 
number of the fluid at the outer and at the inner cylinder for different values of fl~, ~b and 4. We 
observe that the phase lag increases slowly with ioncrease of ~b but it decreases with increase of  
fl~. The phase lag at the inner cylinder is more than that at the outer cylinder but the difference 
in the phase lag at the inner and at the outer cylinder decreases with increase of fl~. Phase lag 
decreases with increase of 2 for small fl~, i.e. for a large frequency of oscillation in a pressure 
gradient, but with an increase of fl~ the variation in phase lag with 2 becomes small and for large 
fl~ (i.e. when the frequency of oscillation is small), there is a damped oscillation in the phase lag 
with an increase of 2. 

The variation of the amplitude of the second unsteady.part of the Nusselt number at the inner 
and at the outer cylinder with ~b, fl~ and 2 has been shown in figure 8(a) and (b). It is seen that 
the amplitude of  the second unsteady part of the Nusselt number increases with increase of fl~ at 
both cylinders and decreases with increase of ~b at the outer cylinder, whereas at the inner cylinder 
it decreases with increase of  q5 upto a certain value and after that it increases with an increase of 
~b. The amplitude of Nu2 at the inner cylinder as well as that at the outer cylinder increases with 
increase of aspect ratio 2. 

Figure 9(a) exhibits the graphs of the phase difference of the second unsteady part of the Nusselt 
number at the inner and at the outer cylinder against q~ for different values of fl~ and figure 9(b) 
shows the same against 2. It can be seen that the phase difference of the second unsteady part of 
the Nusselt number at the inner cylinder changes from phase lag to phase lead with increase of 
q~, but at the outer cylinder it is always a phase lag. With increase of 2, the variation of phase 
difference is oscillatory and the amplitude of this oscillation decreases with increase of either fl~ 
or 4. 

In the present modelling we have assumed that the Reynolds number based on the relative 
velocity of the particle phase has to be less than 1.0. So we can write. 

lup - uL(a - b )  
< 1.0. 

V 

* and parameter Re, the above inequality can be written Using the dimensionless variables u*, up 
as (dropping the superscripts), 

1 

Re < -  1up1 - ull. 
C 

N o w ,  

Rec =-1 lupt - ull, 
E 

Re¢ is called the critical Reynolds number of the fluid, i.e. the Reynolds number of the fluid has 
to be less than Rec so as to satisfy our assumptions. 

Figure 10 shows the graph of critical Reynolds number against q5 for different values of fl~ and 
2. It is seen that the critical Reynolds number Rec increases slowly with increase of ~b and decreases 
with increase of either fl~ or 2. 

5. C O N C L U S I O N S  

From the theoretical investigation of the pulsatile flow and heat transfer of a dusty fluid through 
the annulus of two concentric pipes the following observations can be made. 
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The steady parts of the flow of the fluid and the particle phase are the same and they decrease 

with decrease of the annular gap; whereas the amplitudes of the unsteady velocity of the fluid and 
of the particle phase increase with decrease of this gap. The steady parts of the velocity are large 
compared to the amplitude of the unsteady parts. The combined velocity of the fluid, as well as 
of the particle phase, decreases with decrease of the gap between the cylinders. This occurs due 
to the effect of the viscosity of the fluid near the walls of the annulus. With a decrease of the annular 
gap the steady part of the rate of heat transfer increases at the outer wall whereas that at the inner 
wall decreases. The amplitude of the unsteady part of the rate of heat transfer is much smaller than 
the steady one and oscillates with a decrease of the annular gap. 

The amplitudes of the unsteady parts of the rate of heat transfer at both walls decrease with an 
increase of the frequency of oscillation of the pulsating pressure gradient. 

The effect of the increase of volume fraction on the heat transfer rate at both walls is to decrease 
it for a large frequency of oscillation. 
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